Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multi-level Attention Model for Weakly Supervised Audio Classification

Published 6 Mar 2018 in eess.AS and cs.SD | (1803.02353v1)

Abstract: In this paper, we propose a multi-level attention model to solve the weakly labelled audio classification problem. The objective of audio classification is to predict the presence or absence of audio events in an audio clip. Recently, Google published a large scale weakly labelled dataset called Audio Set, where each audio clip contains only the presence or absence of the audio events, without the onset and offset time of the audio events. Our multi-level attention model is an extension to the previously proposed single-level attention model. It consists of several attention modules applied on intermediate neural network layers. The output of these attention modules are concatenated to a vector followed by a multi-label classifier to make the final prediction of each class. Experiments shown that our model achieves a mean average precision (mAP) of 0.360, outperforms the state-of-the-art single-level attention model of 0.327 and Google baseline of 0.314.

Citations (83)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.