Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Multi-class Active Learning: A Hybrid Informative and Representative Criterion Inspired Approach (1803.02222v1)

Published 6 Mar 2018 in cs.LG, cs.CV, and stat.ML

Abstract: Labeling each instance in a large dataset is extremely labor- and time- consuming . One way to alleviate this problem is active learning, which aims to which discover the most valuable instances for labeling to construct a powerful classifier. Considering both informativeness and representativeness provides a promising way to design a practical active learning. However, most existing active learning methods select instances favoring either informativeness or representativeness. Meanwhile, many are designed based on the binary class, so that they may present suboptimal solutions on the datasets with multiple classes. In this paper, a hybrid informative and representative criterion based multi-class active learning approach is proposed. We combine the informative informativeness and representativeness into one formula, which can be solved under a unified framework. The informativeness is measured by the margin minimum while the representative information is measured by the maximum mean discrepancy. By minimizing the upper bound for the true risk, we generalize the empirical risk minimization principle to the active learning setting. Simultaneously, our proposed method makes full use of the label information, and the proposed active learning is designed based on multiple classes. So the proposed method is not suitable to the binary class but also the multiple classes. We conduct our experiments on twelve benchmark UCI data sets, and the experimental results demonstrate that the proposed method performs better than some state-of-the-art methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.