Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Tree Species Identification from Bark Images Using Convolutional Neural Networks (1803.00949v2)

Published 2 Mar 2018 in cs.CV

Abstract: Tree species identification using bark images is a challenging problem that could prove useful for many forestry related tasks. However, while the recent progress in deep learning showed impressive results on standard vision problems, a lack of datasets prevented its use on tree bark species classification. In this work, we present, and make publicly available, a novel dataset called BarkNet 1.0 containing more than 23,000 high-resolution bark images from 23 different tree species over a wide range of tree diameters. With it, we demonstrate the feasibility of species recognition through bark images, using deep learning. More specifically, we obtain an accuracy of 93.88% on single crop, and an accuracy of 97.81% using a majority voting approach on all of the images of a tree. We also empirically demonstrate that, for a fixed number of images, it is better to maximize the number of tree individuals in the training database, thus directing future data collection efforts.

Citations (56)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.