Papers
Topics
Authors
Recent
2000 character limit reached

Detecting non-causal artifacts in multivariate linear regression models (1803.00810v1)

Published 2 Mar 2018 in stat.ML and cs.LG

Abstract: We consider linear models where $d$ potential causes $X_1,...,X_d$ are correlated with one target quantity $Y$ and propose a method to infer whether the association is causal or whether it is an artifact caused by overfitting or hidden common causes. We employ the idea that in the former case the vector of regression coefficients has 'generic' orientation relative to the covariance matrix $\Sigma_{XX}$ of $X$. Using an ICA based model for confounding, we show that both confounding and overfitting yield regression vectors that concentrate mainly in the space of low eigenvalues of $\Sigma_{XX}$.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.