Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Convergence rates for discretized Monge-Ampère equations and quantitative stability of optimal transport (1803.00785v2)

Published 2 Mar 2018 in math.NA, cs.NA, math.AP, and math.CV

Abstract: In recent works - both experimental and theoretical - it has been shown how to use computational geometry to efficently construct approximations to the optimal transport map between two given probability measures on Euclidean space, by discretizing one of the measures. Here we provide a quantative convergence analysis for the solutions of the corresponding discretized Monge-Amp`ere equations. This yields L{2}-converge rates, in terms of the corresponding spatial resolution h, of the discrete approximations of the optimal transport map, when the source measure is discretized and the target measure has bounded convex support. Periodic variants of the results are also established. The proofs are based on quantitative stability results for optimal transport maps, shown using complex geometry.

Citations (41)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)