Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Convergence rates for discretized Monge-Ampère equations and quantitative stability of optimal transport (1803.00785v2)

Published 2 Mar 2018 in math.NA, cs.NA, math.AP, and math.CV

Abstract: In recent works - both experimental and theoretical - it has been shown how to use computational geometry to efficently construct approximations to the optimal transport map between two given probability measures on Euclidean space, by discretizing one of the measures. Here we provide a quantative convergence analysis for the solutions of the corresponding discretized Monge-Amp`ere equations. This yields L{2}-converge rates, in terms of the corresponding spatial resolution h, of the discrete approximations of the optimal transport map, when the source measure is discretized and the target measure has bounded convex support. Periodic variants of the results are also established. The proofs are based on quantitative stability results for optimal transport maps, shown using complex geometry.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.