Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Natural data structure extracted from neighborhood-similarity graphs (1803.00500v1)

Published 15 Feb 2018 in stat.ML, cond-mat.dis-nn, cs.CV, and cs.LG

Abstract: 'Big' high-dimensional data are commonly analyzed in low-dimensions, after performing a dimensionality-reduction step that inherently distorts the data structure. For the same purpose, clustering methods are also often used. These methods also introduce a bias, either by starting from the assumption of a particular geometric form of the clusters, or by using iterative schemes to enhance cluster contours, with uncontrollable consequences. The goal of data analysis should, however, be to encode and detect structural data features at all scales and densities simultaneously, without assuming a parametric form of data point distances, or modifying them. We propose a novel approach that directly encodes data point neighborhood similarities as a sparse graph. Our non-iterative framework permits a transparent interpretation of data, without altering the original data dimension and metric. Several natural and synthetic data applications demonstrate the efficacy of our novel approach.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.