Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Near-Optimal Sample Complexity Bounds for Maximum Likelihood Estimation of Multivariate Log-concave Densities (1802.10575v2)

Published 28 Feb 2018 in math.ST, cs.IT, cs.LG, math.IT, and stat.TH

Abstract: We study the problem of learning multivariate log-concave densities with respect to a global loss function. We obtain the first upper bound on the sample complexity of the maximum likelihood estimator (MLE) for a log-concave density on $\mathbb{R}d$, for all $d \geq 4$. Prior to this work, no finite sample upper bound was known for this estimator in more than $3$ dimensions. In more detail, we prove that for any $d \geq 1$ and $\epsilon>0$, given $\tilde{O}_d((1/\epsilon){(d+3)/2})$ samples drawn from an unknown log-concave density $f_0$ on $\mathbb{R}d$, the MLE outputs a hypothesis $h$ that with high probability is $\epsilon$-close to $f_0$, in squared Hellinger loss. A sample complexity lower bound of $\Omega_d((1/\epsilon){(d+1)/2})$ was previously known for any learning algorithm that achieves this guarantee. We thus establish that the sample complexity of the log-concave MLE is near-optimal, up to an $\tilde{O}(1/\epsilon)$ factor.

Citations (24)

Summary

We haven't generated a summary for this paper yet.