Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Simple Method to improve Initialization Robustness for Active Contours driven by Local Region Fitting Energy (1802.10437v2)

Published 28 Feb 2018 in cs.CV

Abstract: Active contour models based on local region fitting energy can segment images with intensity inhomogeneity effectively, but their segmentation results are easy to error if the initial contour is inappropriate. In this paper, we present a simple and universal method of improving the robustness of initial contour for these local fitting-based models. The core idea of proposed method is exchanging the fitting values on the two sides of contour, so that the fitting values inside the contour are always larger (or smaller) than the values outside the contour in the process of curve evolution. In this way, the whole curve will evolve along the inner (or outer) boundaries of object, and less likely to be stuck in the object or background. Experimental results have proved that using the proposed method can enhance the robustness of initial contour and meanwhile keep the original advantages in the local fitting-based models.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)