Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 44 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

How long, O Bayesian network, will I sample thee? A program analysis perspective on expected sampling times (1802.10433v1)

Published 28 Feb 2018 in cs.PL

Abstract: Bayesian networks (BNs) are probabilistic graphical models for describing complex joint probability distributions. The main problem for BNs is inference: Determine the probability of an event given observed evidence. Since exact inference is often infeasible for large BNs, popular approximate inference methods rely on sampling. We study the problem of determining the expected time to obtain a single valid sample from a BN. To this end, we translate the BN together with observations into a probabilistic program. We provide proof rules that yield the exact expected runtime of this program in a fully automated fashion. We implemented our approach and successfully analyzed various real-world BNs taken from the Bayesian network repository.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.