Papers
Topics
Authors
Recent
2000 character limit reached

Tensor Decomposition for Compressing Recurrent Neural Network (1802.10410v2)

Published 28 Feb 2018 in cs.LG

Abstract: In the machine learning fields, Recurrent Neural Network (RNN) has become a popular architecture for sequential data modeling. However, behind the impressive performance, RNNs require a large number of parameters for both training and inference. In this paper, we are trying to reduce the number of parameters and maintain the expressive power from RNN simultaneously. We utilize several tensor decompositions method including CANDECOMP/PARAFAC (CP), Tucker decomposition and Tensor Train (TT) to re-parameterize the Gated Recurrent Unit (GRU) RNN. We evaluate all tensor-based RNNs performance on sequence modeling tasks with a various number of parameters. Based on our experiment results, TT-GRU achieved the best results in a various number of parameters compared to other decomposition methods.

Citations (51)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.