Survivable Network Design for Group Connectivity in Low-Treewidth Graphs (1802.10403v1)
Abstract: In the Group Steiner Tree problem (GST), we are given a (vertex or edge)-weighted graph $G=(V,E)$ on $n$ vertices, a root vertex $r$ and a collection of groups ${S_i}_{i\in[h]}: S_i\subseteq V(G)$. The goal is to find a min-cost subgraph $H$ that connects the root to every group. We consider a fault-tolerant variant of GST, which we call Restricted (Rooted) Group SNDP. In this setting, each group $S_i$ has a demand $k_i\in[k],k\in\mathbb N$, and we wish to find a min-cost $H\subseteq G$ such that, for each group $S_i$, there is a vertex in $S_i$ connected to the root via $k_i$ (vertex or edge) disjoint paths. While GST admits $O(\log2 n\log h)$ approximation, its high connectivity variants are Label-Cover hard, and for the vertex-weighted version, the hardness holds even when $k=2$. Previously, positive results were known only for the edge-weighted version when $k=2$ [Gupta et al., SODA 2010; Khandekar et al., Theor. Comput. Sci., 2012] and for a relaxed variant where the disjoint paths may end at different vertices in a group [Chalermsook et al., SODA 2015]. Our main result is an $O(\log n\log h)$ approximation for Restricted Group SNDP that runs in time $n{f(k, w)}$, where $w$ is the treewidth of $G$. This nearly matches the lower bound when $k$ and $w$ are constant. The key to achieving this result is a non-trivial extension of the framework in [Chalermsook et al., SODA 2017], which embeds all feasible solutions to the problem into a dynamic program (DP) table. However, finding the optimal solution in the DP table remains intractable. We formulate a linear program relaxation for the DP and obtain an approximate solution via randomized rounding. This framework also allows us to systematically construct DP tables for high-connectivity problems. As a result, we present new exact algorithms for several variants of survivable network design problems in low-treewidth graphs.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.