Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Online Non-preemptive Scheduling on Unrelated Machines with Rejections (1802.10309v1)

Published 28 Feb 2018 in cs.DS

Abstract: When a computer system schedules jobs there is typically a significant cost associated with preempting a job during execution. This cost can be from the expensive task of saving the memory's state and loading data into and out of memory. It is desirable to schedule jobs non-preemptively to avoid the costs of preemption. There is a need for non-preemptive system schedulers on desktops, servers and data centers. Despite this need, there is a gap between theory and practice. Indeed, few non-preemptive \emph{online} schedulers are known to have strong foundational guarantees. This gap is likely due to strong lower bounds on any online algorithm for popular objectives. Indeed, typical worst case analysis approaches, and even resource augmented approaches such as speed augmentation, result in all algorithms having poor performance guarantees. This paper considers on-line non-preemptive scheduling problems in the worst-case rejection model where the algorithm is allowed to reject a small fraction of jobs. By rejecting only a few jobs, this paper shows that the strong lower bounds can be circumvented. This approach can be used to discover algorithmic scheduling policies with desirable worst-case guarantees. Specifically, the paper presents algorithms for the following two objectives: minimizing the total flow-time and minimizing the total weighted flow-time plus energy under the speed-scaling mechanism. The algorithms have a small constant competitive ratio while rejecting only a constant fraction of jobs. Beyond specific results, the paper asserts that alternative models beyond speed augmentation should be explored to aid in the discovery of good schedulers in the face of the requirement of being online and non-preemptive.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube