Generating High Quality Visible Images from SAR Images Using CNNs (1802.10036v1)
Abstract: We propose a novel approach for generating high quality visible-like images from Synthetic Aperture Radar (SAR) images using Deep Convolutional Generative Adversarial Network (GAN) architectures. The proposed approach is based on a cascaded network of convolutional neural nets (CNNs) for despeckling and image colorization. The cascaded structure results in faster convergence during training and produces high quality visible images from the corresponding SAR images. Experimental results on both simulated and real SAR images show that the proposed method can produce visible-like images better compared to the recent state-of-the-art deep learning-based methods.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.