Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Price of Stability of Weighted Congestion Games (1802.09952v4)

Published 27 Feb 2018 in cs.GT

Abstract: We give exponential lower bounds on the Price of Stability (PoS) of weighted congestion games with polynomial cost functions. In particular, for any positive integer $d$ we construct rather simple games with cost functions of degree at most $d$ which have a PoS of at least $\varOmega(\Phi_d){d+1}$, where $\Phi_d\sim d/\ln d$ is the unique positive root of equation $x{d+1}=(x+1)d$. This almost closes the huge gap between $\varTheta(d)$ and $\Phi_d{d+1}$. Our bound extends also to network congestion games. We further show that the PoS remains exponential even for singleton games. More generally, we provide a lower bound of $\varOmega((1+1/\alpha)d/d)$ on the PoS of $\alpha$-approximate Nash equilibria for singleton games. All our lower bounds hold for mixed and correlated equilibria as well. On the positive side, we give a general upper bound on the PoS of $\alpha$-approximate Nash equilibria, which is sensitive to the range $W$ of the player weights and the approximation parameter $\alpha$. We do this by explicitly constructing a novel approximate potential function, based on Faulhaber's formula, that generalizes Rosenthal's potential in a continuous, analytic way. From the general theorem, we deduce two interesting corollaries. First, we derive the existence of an approximate pure Nash equilibrium with PoS at most $(d+3)/2$; the equilibrium's approximation parameter ranges from $\varTheta(1)$ to $d+1$ in a smooth way with respect to $W$. Secondly, we show that for unweighted congestion games, the PoS of $\alpha$-approximate Nash equilibria is at most $(d+1)/\alpha$.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.