Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Price of Stability of Weighted Congestion Games (1802.09952v4)

Published 27 Feb 2018 in cs.GT

Abstract: We give exponential lower bounds on the Price of Stability (PoS) of weighted congestion games with polynomial cost functions. In particular, for any positive integer $d$ we construct rather simple games with cost functions of degree at most $d$ which have a PoS of at least $\varOmega(\Phi_d){d+1}$, where $\Phi_d\sim d/\ln d$ is the unique positive root of equation $x{d+1}=(x+1)d$. This almost closes the huge gap between $\varTheta(d)$ and $\Phi_d{d+1}$. Our bound extends also to network congestion games. We further show that the PoS remains exponential even for singleton games. More generally, we provide a lower bound of $\varOmega((1+1/\alpha)d/d)$ on the PoS of $\alpha$-approximate Nash equilibria for singleton games. All our lower bounds hold for mixed and correlated equilibria as well. On the positive side, we give a general upper bound on the PoS of $\alpha$-approximate Nash equilibria, which is sensitive to the range $W$ of the player weights and the approximation parameter $\alpha$. We do this by explicitly constructing a novel approximate potential function, based on Faulhaber's formula, that generalizes Rosenthal's potential in a continuous, analytic way. From the general theorem, we deduce two interesting corollaries. First, we derive the existence of an approximate pure Nash equilibrium with PoS at most $(d+3)/2$; the equilibrium's approximation parameter ranges from $\varTheta(1)$ to $d+1$ in a smooth way with respect to $W$. Secondly, we show that for unweighted congestion games, the PoS of $\alpha$-approximate Nash equilibria is at most $(d+1)/\alpha$.

Citations (18)

Summary

We haven't generated a summary for this paper yet.