Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Linear codes with few weights over $\mathbb{F}_2+u\mathbb{F}_2$ (1802.09919v1)

Published 24 Feb 2018 in cs.IT and math.IT

Abstract: In this paper, we construct an infinite family of five-weight codes from trace codes over the ring $R=\mathbb{F}_2+u\mathbb{F}_2$, where $u2=0.$ The trace codes have the algebraic structure of abelian codes. Their Lee weight is computed by using character sums. Combined with Pless power moments and Newton's Identities, the weight distribution of the Gray image of trace codes was present. Their support structure is determined. An application to secret sharing schemes is given.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.