Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On multi-step prediction models for receding horizon control (1802.09767v1)

Published 27 Feb 2018 in cs.SY, math.DS, and math.OC

Abstract: The derivation of multi-step-ahead prediction models from sampled data of a linear system is considered. A dedicated prediction model is built for each future time step of interest. In addition to a nominal model, the set of all models consistent with data and prior information is derived as well, making the approach suitable for robust control design within a Model Predictive Control framework. The resulting parameter identification problem is solved through a sequence of convex programs, overcoming the non-convexity arising when identifying 1-step prediction models with an output-error criterion. At the same time, the derived models guarantee a worst-case error which is always smaller than the one obtained by iterating models identified with a 1-step prediction error criterion.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.