Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

ReHAR: Robust and Efficient Human Activity Recognition (1802.09745v1)

Published 27 Feb 2018 in cs.CV

Abstract: Designing a scheme that can achieve a good performance in predicting single person activities and group activities is a challenging task. In this paper, we propose a novel robust and efficient human activity recognition scheme called ReHAR, which can be used to handle single person activities and group activities prediction. First, we generate an optical flow image for each video frame. Then, both video frames and their corresponding optical flow images are fed into a Single Frame Representation Model to generate representations. Finally, an LSTM is used to pre- dict the final activities based on the generated representations. The whole model is trained end-to-end to allow meaningful representations to be generated for the final activity recognition. We evaluate ReHAR using two well-known datasets: the NCAA Basketball Dataset and the UCFSports Action Dataset. The experimental results show that the pro- posed ReHAR achieves a higher activity recognition accuracy with an order of magnitude shorter computation time compared to the state-of-the-art methods.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)