Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multi-Observation Regression (1802.09680v1)

Published 27 Feb 2018 in cs.LG

Abstract: Recent work introduced loss functions which measure the error of a prediction based on multiple simultaneous observations or outcomes. In this paper, we explore the theoretical and practical questions that arise when using such multi-observation losses for regression on data sets of $(x,y)$ pairs. When a loss depends on only one observation, the average empirical loss decomposes by applying the loss to each pair, but for the multi-observation case, empirical loss is not even well-defined, and the possibility of statistical guarantees is unclear without several $(x,y)$ pairs with exactly the same $x$ value. We propose four algorithms formalizing the concept of empirical risk minimization for this problem, two of which have statistical guarantees in settings allowing both slow and fast convergence rates, but which are out-performed empirically by the other two. Empirical results demonstrate practicality of these algorithms in low-dimensional settings, while lower bounds demonstrate intrinsic difficulty in higher dimensions. Finally, we demonstrate the potential benefit of the algorithms over natural baselines that use traditional single-observation losses via both lower bounds and simulations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.