Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The replica symmetric phase of random constraint satisfaction problems (1802.09311v1)

Published 26 Feb 2018 in math.CO, cs.DM, and math.PR

Abstract: Random constraint satisfaction problems play an important role in computer science and combinatorics. For example, they provide challenging benchmark instances for algorithms and they have been harnessed in probabilistic constructions of combinatorial structures with peculiar features. In an important contribution [Krzakala et al., PNAS 2007] physicists made several predictions on the precise location and nature of phase transitions in random constraint satisfaction problems. Specifically, they predicted that their satisfiability thresholds are quite generally preceded by several other thresholds that have a substantial impact both combinatorially and computationally. These include the condensation phase transition, where long-range correlations between variables emerge, and the reconstruction threshold. In this paper we prove these physics predictions for a broad class of random constraint satisfaction problems. Additionally, we obtain contiguity results that have implications on Bayesian inference tasks, a subject that has received a great deal of interest recently (e.g., [Banks et al., COLT 2016]).

Citations (14)

Summary

We haven't generated a summary for this paper yet.