Emergent Mind

A representer theorem for deep neural networks

(1802.09210)
Published Feb 26, 2018 in stat.ML and cs.LG

Abstract

We propose to optimize the activation functions of a deep neural network by adding a corresponding functional regularization to the cost function. We justify the use of a second-order total-variation criterion. This allows us to derive a general representer theorem for deep neural networks that makes a direct connection with splines and sparsity. Specifically, we show that the optimal network configuration can be achieved with activation functions that are nonuniform linear splines with adaptive knots. The bottom line is that the action of each neuron is encoded by a spline whose parameters (including the number of knots) are optimized during the training procedure. The scheme results in a computational structure that is compatible with the existing deep-ReLU, parametric ReLU, APL (adaptive piecewise-linear) and MaxOut architectures. It also suggests novel optimization challenges, while making the link with $\ell_1$ minimization and sparsity-promoting techniques explicit.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.