Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Testability of high-dimensional linear models with non-sparse structures (1802.09117v3)

Published 26 Feb 2018 in math.ST, stat.ME, stat.ML, and stat.TH

Abstract: Understanding statistical inference under possibly non-sparse high-dimensional models has gained much interest recently. For a given component of the regression coefficient, we show that the difficulty of the problem depends on the sparsity of the corresponding row of the precision matrix of the covariates, not the sparsity of the regression coefficients. We develop new concepts of uniform and essentially uniform non-testability that allow the study of limitations of tests across a broad set of alternatives. Uniform non-testability identifies a collection of alternatives such that the power of any test, against any alternative in the group, is asymptotically at most equal to the nominal size. Implications of the new constructions include new minimax testability results that, in sharp contrast to the current results, do not depend on the sparsity of the regression parameters. We identify new tradeoffs between testability and feature correlation. In particular, we show that, in models with weak feature correlations, minimax lower bound can be attained by a test whose power has the $\sqrt{n}$ rate, regardless of the size of the model sparsity.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.