Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

The AdobeIndoorNav Dataset: Towards Deep Reinforcement Learning based Real-world Indoor Robot Visual Navigation (1802.08824v1)

Published 24 Feb 2018 in cs.RO

Abstract: Deep reinforcement learning (DRL) demonstrates its potential in learning a model-free navigation policy for robot visual navigation. However, the data-demanding algorithm relies on a large number of navigation trajectories in training. Existing datasets supporting training such robot navigation algorithms consist of either 3D synthetic scenes or reconstructed scenes. Synthetic data suffers from domain gap to the real-world scenes while visual inputs rendered from 3D reconstructed scenes have undesired holes and artifacts. In this paper, we present a new dataset collected in real-world to facilitate the research in DRL based visual navigation. Our dataset includes 3D reconstruction for real-world scenes as well as densely captured real 2D images from the scenes. It provides high-quality visual inputs with real-world scene complexity to the robot at dense grid locations. We further study and benchmark one recent DRL based navigation algorithm and present our attempts and thoughts on improving its generalizability to unseen test targets in the scenes.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com