Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Extremely Fast Decision Tree (1802.08780v1)

Published 24 Feb 2018 in cs.LG and stat.ML

Abstract: We introduce a novel incremental decision tree learning algorithm, Hoeffding Anytime Tree, that is statistically more efficient than the current state-of-the-art, Hoeffding Tree. We demonstrate that an implementation of Hoeffding Anytime Tree---"Extremely Fast Decision Tree", a minor modification to the MOA implementation of Hoeffding Tree---obtains significantly superior prequential accuracy on most of the largest classification datasets from the UCI repository. Hoeffding Anytime Tree produces the asymptotic batch tree in the limit, is naturally resilient to concept drift, and can be used as a higher accuracy replacement for Hoeffding Tree in most scenarios, at a small additional computational cost.

Citations (129)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.