Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Fast and Sample Near-Optimal Algorithms for Learning Multidimensional Histograms (1802.08513v1)

Published 23 Feb 2018 in cs.LG, cs.DS, math.ST, and stat.TH

Abstract: We study the problem of robustly learning multi-dimensional histograms. A $d$-dimensional function $h: D \rightarrow \mathbb{R}$ is called a $k$-histogram if there exists a partition of the domain $D \subseteq \mathbb{R}d$ into $k$ axis-aligned rectangles such that $h$ is constant within each such rectangle. Let $f: D \rightarrow \mathbb{R}$ be a $d$-dimensional probability density function and suppose that $f$ is $\mathrm{OPT}$-close, in $L_1$-distance, to an unknown $k$-histogram (with unknown partition). Our goal is to output a hypothesis that is $O(\mathrm{OPT}) + \epsilon$ close to $f$, in $L_1$-distance. We give an algorithm for this learning problem that uses $n = \tilde{O}_d(k/\epsilon2)$ samples and runs in time $\tilde{O}_d(n)$. For any fixed dimension, our algorithm has optimal sample complexity, up to logarithmic factors, and runs in near-linear time. Prior to our work, the time complexity of the $d=1$ case was well-understood, but significant gaps in our understanding remained even for $d=2$.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.