Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

High Order Recurrent Neural Networks for Acoustic Modelling (1802.08314v1)

Published 22 Feb 2018 in cs.CL, cs.AI, eess.AS, and stat.ML

Abstract: Vanishing long-term gradients are a major issue in training standard recurrent neural networks (RNNs), which can be alleviated by long short-term memory (LSTM) models with memory cells. However, the extra parameters associated with the memory cells mean an LSTM layer has four times as many parameters as an RNN with the same hidden vector size. This paper addresses the vanishing gradient problem using a high order RNN (HORNN) which has additional connections from multiple previous time steps. Speech recognition experiments using British English multi-genre broadcast (MGB3) data showed that the proposed HORNN architectures for rectified linear unit and sigmoid activation functions reduced word error rates (WER) by 4.2% and 6.3% over the corresponding RNNs, and gave similar WERs to a (projected) LSTM while using only 20%--50% of the recurrent layer parameters and computation.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.