Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

High Order Recurrent Neural Networks for Acoustic Modelling (1802.08314v1)

Published 22 Feb 2018 in cs.CL, cs.AI, eess.AS, and stat.ML

Abstract: Vanishing long-term gradients are a major issue in training standard recurrent neural networks (RNNs), which can be alleviated by long short-term memory (LSTM) models with memory cells. However, the extra parameters associated with the memory cells mean an LSTM layer has four times as many parameters as an RNN with the same hidden vector size. This paper addresses the vanishing gradient problem using a high order RNN (HORNN) which has additional connections from multiple previous time steps. Speech recognition experiments using British English multi-genre broadcast (MGB3) data showed that the proposed HORNN architectures for rectified linear unit and sigmoid activation functions reduced word error rates (WER) by 4.2% and 6.3% over the corresponding RNNs, and gave similar WERs to a (projected) LSTM while using only 20%--50% of the recurrent layer parameters and computation.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube