Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 29 tok/s Pro
2000 character limit reached

Linear complexity of Ding-Helleseth generalized cyclotomic sequences of order eight (1802.08105v1)

Published 22 Feb 2018 in math.NT and cs.CR

Abstract: During the last two decades, many kinds of periodic sequences with good pseudo-random properties have been constructed from classical and generalized cyclotomic classes, and used as keystreams for stream ciphers and secure communications. Among them are a family DH-GCS${d}$ of generalized cyclotomic sequences on the basis of Ding and Helleseth's generalized cyclotomy, of length $pq$ and order $d=\mathrm{gcd}(p-1,q-1)$ for distinct odd primes $p$ and $q$. The linear complexity (or linear span), as a valuable measure of unpredictability, is precisely determined for DH-GCS${8}$ in this paper. Our approach is based on Edemskiy and Antonova's computation method with the help of explicit expressions of Gaussian classical cyclotomic numbers of order $8$. Our result for $d=8$ is compatible with Yan's low bound $(pq-1)/2$ of the linear complexity for any order $d$, which means high enough to resist security attacks of the Berlekamp-Massey algorithm. Finally, we include SageMath codes to illustrate the validity of our result by examples.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.