Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Regional Multi-Armed Bandits (1802.07917v1)

Published 22 Feb 2018 in cs.LG and stat.ML

Abstract: We consider a variant of the classic multi-armed bandit problem where the expected reward of each arm is a function of an unknown parameter. The arms are divided into different groups, each of which has a common parameter. Therefore, when the player selects an arm at each time slot, information of other arms in the same group is also revealed. This regional bandit model naturally bridges the non-informative bandit setting where the player can only learn the chosen arm, and the global bandit model where sampling one arms reveals information of all arms. We propose an efficient algorithm, UCB-g, that solves the regional bandit problem by combining the Upper Confidence Bound (UCB) and greedy principles. Both parameter-dependent and parameter-free regret upper bounds are derived. We also establish a matching lower bound, which proves the order-optimality of UCB-g. Moreover, we propose SW-UCB-g, which is an extension of UCB-g for a non-stationary environment where the parameters slowly vary over time.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.