Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Entropy Rate Estimation for Markov Chains with Large State Space (1802.07889v3)

Published 22 Feb 2018 in cs.LG, math.ST, stat.ML, and stat.TH

Abstract: Estimating the entropy based on data is one of the prototypical problems in distribution property testing and estimation. For estimating the Shannon entropy of a distribution on $S$ elements with independent samples, [Paninski2004] showed that the sample complexity is sublinear in $S$, and [Valiant--Valiant2011] showed that consistent estimation of Shannon entropy is possible if and only if the sample size $n$ far exceeds $\frac{S}{\log S}$. In this paper we consider the problem of estimating the entropy rate of a stationary reversible Markov chain with $S$ states from a sample path of $n$ observations. We show that: (1) As long as the Markov chain mixes not too slowly, i.e., the relaxation time is at most $O(\frac{S}{\ln3 S})$, consistent estimation is achievable when $n \gg \frac{S2}{\log S}$. (2) As long as the Markov chain has some slight dependency, i.e., the relaxation time is at least $1+\Omega(\frac{\ln2 S}{\sqrt{S}})$, consistent estimation is impossible when $n \lesssim \frac{S2}{\log S}$. Under both assumptions, the optimal estimation accuracy is shown to be $\Theta(\frac{S2}{n \log S})$. In comparison, the empirical entropy rate requires at least $\Omega(S2)$ samples to be consistent, even when the Markov chain is memoryless. In addition to synthetic experiments, we also apply the estimators that achieve the optimal sample complexity to estimate the entropy rate of the English language in the Penn Treebank and the Google One Billion Words corpora, which provides a natural benchmark for LLMing and relates it directly to the widely used perplexity measure.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.