Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 46 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Neural Predictive Coding using Convolutional Neural Networks towards Unsupervised Learning of Speaker Characteristics (1802.07860v2)

Published 22 Feb 2018 in cs.SD, cs.CL, and eess.AS

Abstract: Learning speaker-specific features is vital in many applications like speaker recognition, diarization and speech recognition. This paper provides a novel approach, we term Neural Predictive Coding (NPC), to learn speaker-specific characteristics in a completely unsupervised manner from large amounts of unlabeled training data that even contain many non-speech events and multi-speaker audio streams. The NPC framework exploits the proposed short-term active-speaker stationarity hypothesis which assumes two temporally-close short speech segments belong to the same speaker, and thus a common representation that can encode the commonalities of both the segments, should capture the vocal characteristics of that speaker. We train a convolutional deep siamese network to produce "speaker embeddings" by learning to separate same' vsdifferent' speaker pairs which are generated from an unlabeled data of audio streams. Two sets of experiments are done in different scenarios to evaluate the strength of NPC embeddings and compare with state-of-the-art in-domain supervised methods. First, two speaker identification experiments with different context lengths are performed in a scenario with comparatively limited within-speaker channel variability. NPC embeddings are found to perform the best at short duration experiment, and they provide complementary information to i-vectors for full utterance experiments. Second, a large scale speaker verification task having a wide range of within-speaker channel variability is adopted as an upper-bound experiment where comparisons are drawn with in-domain supervised methods.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.