MIS in the Congested Clique Model in $O(\log \log Δ)$ Rounds (1802.07647v1)
Abstract: We give a maximal independent set (MIS) algorithm that runs in $O(\log \log \Delta)$ rounds in the congested clique model, where $\Delta$ is the maximum degree of the input graph. This improves upon the $O(\frac{\log(\Delta) \cdot \log \log \Delta}{\sqrt{\log n}} + \log \log \Delta )$ rounds algorithm of [Ghaffari, PODC '17], where $n$ is the number of vertices of the input graph. In the first stage of our algorithm, we simulate the first $O(\frac{n}{\text{poly} \log n})$ iterations of the sequential random order Greedy algorithm for MIS in the congested clique model in $O(\log \log \Delta)$ rounds. This thins out the input graph relatively quickly: After this stage, the maximum degree of the residual graph is poly-logarithmic. In the second stage, we run the MIS algorithm of [Ghaffari, PODC '17] on the residual graph, which completes in $O(\log \log \Delta)$ rounds on graphs of poly-logarithmic degree.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.