Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Coupling non-conforming discretizations of PDEs by spectral approximation of the Lagrange multiplier space (1802.07601v1)

Published 21 Feb 2018 in math.NA, cs.CE, and cs.NA

Abstract: This work focuses on the development of a non-conforming domain decomposition method for the approximation of PDEs based on weakly imposed transmission conditions: the continuity of the global solution is enforced by a discrete number of Lagrange multipliers defined over the interfaces of adjacent subdomains. The method falls into the class of primal hybrid methods, which also include the well-known mortar method. Differently from the mortar method, we discretize the space of basis functions on the interface by spectral approximation independently of the discretization of the two adjacent domains; one of the possible choices is to approximate the interface variational space by Fourier basis functions. As we show in the numerical simulations, our approach is well-suited for the solution of problems with non-conforming meshes or with finite element basis functions with different polynomial degrees in each subdomain. Another application of the method that still needs to be investigated is the coupling of solutions obtained from otherwise incompatible methods, such as the finite element method, the spectral element method or isogeometric analysis.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.