Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Collaboratively Weighting Deep and Classic Representation via L2 Regularization for Image Classification (1802.07589v2)

Published 21 Feb 2018 in cs.CV

Abstract: Deep convolutional neural networks provide a powerful feature learning capability for image classification. The deep image features can be utilized to deal with many image understanding tasks like image classification and object recognition. However, the robustness obtained in one dataset can be hardly reproduced in the other domain, which leads to inefficient models far from state-of-the-art. We propose a deep collaborative weight-based classification (DeepCWC) method to resolve this problem, by providing a novel option to fully take advantage of deep features in classic machine learning. It firstly performs the L2-norm based collaborative representation on the original images, as well as the deep features extracted by deep CNN models. Then, two distance vectors, obtained based on the pair of linear representations, are fused together via a novel collaborative weight. This collaborative weight enables deep and classic representations to weigh each other. We observed the complementarity between two representations in a series of experiments on 10 facial and object datasets. The proposed DeepCWC produces very promising classification results, and outperforms many other benchmark methods, especially the ones claimed for Fashion-MNIST. The code is going to be published in our public repository.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.