Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Inapproximability of Matrix $p\rightarrow q$ Norms (1802.07425v2)

Published 21 Feb 2018 in cs.CC

Abstract: We study the problem of computing the $p\rightarrow q$ norm of a matrix $A \in R{m \times n}$, defined as [ |A|{p\rightarrow q} ~:=~ \max{x \,\in\, Rn \setminus {0}} \frac{|Ax|q}{|x|_p} ] This problem generalizes the spectral norm of a matrix ($p=q=2$) and the Grothendieck problem ($p=\infty$, $q=1$), and has been widely studied in various regimes. When $p \geq q$, the problem exhibits a dichotomy: constant factor approximation algorithms are known if $2 \in [q,p]$, and the problem is hard to approximate within almost polynomial factors when $2 \notin [q,p]$. The regime when $p < q$, known as \emph{hypercontractive norms}, is particularly significant for various applications but much less well understood. The case with $p = 2$ and $q > 2$ was studied by [Barak et al, STOC'12] who gave sub-exponential algorithms for a promise version of the problem (which captures small-set expansion) and also proved hardness of approximation results based on the Exponential Time Hypothesis. However, no NP-hardness of approximation is known for these problems for any $p < q$. We study the hardness of approximating matrix norms in both the above cases and prove the following results: - We show that for any $1< p < q < \infty$ with $2 \notin [p,q]$, $|A|{p\rightarrow q}$ is hard to approximate within $2{O(\log{1-\epsilon}!n)}$ assuming $NP \not\subseteq BPTIME(2{\log{O(1)}!n})$. This suggests that, similar to the case of $p \geq q$, the hypercontractive setting may be qualitatively different when $2$ does not lie between $p$ and $q$. - For all $p \geq q$ with $2 \in [q,p]$, we show $|A|{p\rightarrow q}$ is hard to approximate within any factor than $1/(\gamma{p*} \cdot \gamma_q)$, where for any $r$, $\gamma_r$ denotes the $r{th}$ norm of a gaussian, and $p*$ is the dual norm of $p$.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.