Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Generic Coreset for Scalable Learning of Monotonic Kernels: Logistic Regression, Sigmoid and more (1802.07382v3)

Published 21 Feb 2018 in cs.LG and cs.DS

Abstract: Coreset (or core-set) is a small weighted \emph{subset} $Q$ of an input set $P$ with respect to a given \emph{monotonic} function $f:\mathbb{R}\to\mathbb{R}$ that \emph{provably} approximates its fitting loss $\sum_{p\in P}f(p\cdot x)$ to \emph{any} given $x\in\mathbb{R}d$. Using $Q$ we can obtain approximation of $x*$ that minimizes this loss, by running \emph{existing} optimization algorithms on $Q$. In this work we provide: (i) A lower bound which proves that there are sets with no coresets smaller than $n=|P|$ for general monotonic loss functions. (ii) A proof that, under a natural assumption that holds e.g. for logistic regression and the sigmoid activation functions, a small coreset exists for \emph{any} input $P$. (iii) A generic coreset construction algorithm that computes such a small coreset $Q$ in $O(nd+n\log n)$ time, and (iv) Experimental results which demonstrate that our coresets are effective and are much smaller in practice than predicted in theory.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.