Generic Coreset for Scalable Learning of Monotonic Kernels: Logistic Regression, Sigmoid and more (1802.07382v3)
Abstract: Coreset (or core-set) is a small weighted \emph{subset} $Q$ of an input set $P$ with respect to a given \emph{monotonic} function $f:\mathbb{R}\to\mathbb{R}$ that \emph{provably} approximates its fitting loss $\sum_{p\in P}f(p\cdot x)$ to \emph{any} given $x\in\mathbb{R}d$. Using $Q$ we can obtain approximation of $x*$ that minimizes this loss, by running \emph{existing} optimization algorithms on $Q$. In this work we provide: (i) A lower bound which proves that there are sets with no coresets smaller than $n=|P|$ for general monotonic loss functions. (ii) A proof that, under a natural assumption that holds e.g. for logistic regression and the sigmoid activation functions, a small coreset exists for \emph{any} input $P$. (iii) A generic coreset construction algorithm that computes such a small coreset $Q$ in $O(nd+n\log n)$ time, and (iv) Experimental results which demonstrate that our coresets are effective and are much smaller in practice than predicted in theory.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.