Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Neuro-adaptive distributed control with prescribed performance for the synchronization of unknown nonlinear networked systems (1802.07253v2)

Published 20 Feb 2018 in math.OC and cs.SY

Abstract: This paper proposes a neuro-adaptive distributive cooperative tracking control with prescribed performance function (PPF) for highly nonlinear multi-agent systems. PPF allows error tracking from a predefined large set to be trapped into a predefined small set. The key idea is to transform the constrained system into unconstrained one through transformation of the output error. Agents' dynamics are assumed to be completely unknown, and the controller is developed for strongly connected structured network. The proposed controller allows all agents to follow the trajectory of the leader node, while satisfying necessary dynamic requirements. The proposed approach guarantees uniform ultimate boundedness of the transformed error and the adaptive neural network weights. Simulations include two examples to validate the robustness and smoothness of the proposed controller against highly nonlinear heterogeneous networked system with time varying uncertain parameters and external disturbances.

Citations (68)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.