Papers
Topics
Authors
Recent
2000 character limit reached

Algorithmic Information Dynamics of Persistent Patterns and Colliding Particles in the Game of Life (1802.07181v4)

Published 18 Feb 2018 in nlin.CG, cs.IT, math.DS, and math.IT

Abstract: Without loss of generalisation to other systems, including possibly non-deterministic ones, we demonstrate the application of methods drawn from algorithmic information dynamics to the characterisation and classification of emergent and persistent patterns, motifs and colliding particles in Conway's Game of Life (GoL), a cellular automaton serving as a case study illustrating the way in which such ideas can be applied to a typical discrete dynamical system. We explore the issue of local observations of closed systems whose orbits may appear open because of inaccessibility to the global rules governing the overall system. We also investigate aspects of symmetry related to complexity in the distribution of patterns that occur with high frequency in GoL (which we thus call motifs) and analyse the distribution of these motifs with a view to tracking the changes in their algorithmic probability over time. We demonstrate how the tools introduced are an alternative to other computable measures that are unable to capture changes in emergent structures in evolving complex systems that are often too small or too subtle to be properly characterised by methods such as lossless compression and Shannon entropy.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.