Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Breaking the Loop: Recursive Proofs for Coinductive Predicates in Fibrations (1802.07143v1)

Published 20 Feb 2018 in cs.LO

Abstract: The purpose of this paper is to develop and study recursive proofs of coinductive predicates. Such recursive proofs allow one to discover proof goals in the construction of a proof of a coinductive predicate, while still allowing the use of up-to techniques. This approach lifts the burden to guess invariants, like bisimulation relations, beforehand. Rather, they allow one to start with the sought-after proof goal and develop the proof from there until a point is reached, at which the proof can be closed through a recursion step. Proofs given in this way are both easier to construct and to understand, similarly to proofs given in cyclic proof systems or by appealing parameterised coinduction. In this paper, we develop a framework for recursive proofs of coinductive predicates that are given through fibrational predicate liftings. This framework is built on the so-called later modality, which has made its appearance in type theoretic settings before. In particular, we show the soundness and completeness of recursive proofs, we prove that compatible up-to techniques can be used as inference rules in recursive proofs, and provide some illustrating examples.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.