Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Breaking the Loop: Recursive Proofs for Coinductive Predicates in Fibrations (1802.07143v1)

Published 20 Feb 2018 in cs.LO

Abstract: The purpose of this paper is to develop and study recursive proofs of coinductive predicates. Such recursive proofs allow one to discover proof goals in the construction of a proof of a coinductive predicate, while still allowing the use of up-to techniques. This approach lifts the burden to guess invariants, like bisimulation relations, beforehand. Rather, they allow one to start with the sought-after proof goal and develop the proof from there until a point is reached, at which the proof can be closed through a recursion step. Proofs given in this way are both easier to construct and to understand, similarly to proofs given in cyclic proof systems or by appealing parameterised coinduction. In this paper, we develop a framework for recursive proofs of coinductive predicates that are given through fibrational predicate liftings. This framework is built on the so-called later modality, which has made its appearance in type theoretic settings before. In particular, we show the soundness and completeness of recursive proofs, we prove that compatible up-to techniques can be used as inference rules in recursive proofs, and provide some illustrating examples.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)