Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Temporal Vertex Cover with a Sliding Time Window (1802.07103v3)

Published 20 Feb 2018 in cs.CC

Abstract: Modern, inherently dynamic systems are usually characterized by a network structure, i.e. an underlying graph topology, which is subject to discrete changes over time. Given a static underlying graph $G$, a temporal graph can be represented via an assignment of a set of integer time-labels to every edge of $G$, indicating the discrete time steps when this edge is active. While most of the recent theoretical research on temporal graphs has focused on the notion of a temporal path and other "path-related" temporal notions, only few attempts have been made to investigate "non-path" temporal graph problems. In this paper, motivated by applications in sensor and in transportation networks, we introduce and study two natural temporal extensions of the classical problem Vertex Cover. In both cases we wish to minimize the total number of "vertex appearances" that are needed to "cover" the whole temporal graph. In our first problem, Temporal Vertex Cover, the aim is to cover every edge at least once during the lifetime of the temporal graph, where an edge can be covered by one of its endpoints, only at a time step when it is active. In our second, more pragmatic variation Sliding Window Temporal Vertex Cover, we are also given a natural number $\Delta$, and our aim is to cover every edge at least once at every $\Delta$ consecutive time steps. We present a thorough investigation of the computational complexity and approximability of these two temporal covering problems. In particular, we provide strong hardness results, complemented by various approximation and exact algorithms. Some of our algorithms are polynomial-time, while others are asymptotically almost optimal under the Exponential Time Hypothesis (ETH) and other plausible complexity assumptions.

Citations (57)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.