2000 character limit reached
Elementary Proofs of Some Stirling Bounds (1802.07046v2)
Published 20 Feb 2018 in math.FA and cs.CC
Abstract: We give elementary proofs of several Stirling's precise bounds. We first improve all the precise bounds from the literature and give new precise bounds. In particular, we show that for all $n\ge 8$ $$\sqrt{2\pi n}\left(\frac{n}{e}\right)n e{\frac{1}{12n}-\frac{1}{360n3+103n}} \ge n!\ge \sqrt{2\pi n}\left(\frac{n}{e}\right)n e{\frac{1}{12n}-\frac{1}{360n3+102n}}$$ and for all $n\ge 3$ $$\sqrt{2\pi n}\left(\frac{n}{e}\right)n e{\frac{1}{12n+\frac{2}{5n}-\frac{1.1}{10n3}}} \ge n!\ge \sqrt{2\pi n}\left(\frac{n}{e}\right)n e{\frac{1}{12n+\frac{2}{5n}-\frac{0.9}{10n3}}}.$$