Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Sublinear Algorithms for MAXCUT and Correlation Clustering (1802.06992v1)

Published 20 Feb 2018 in cs.DS

Abstract: We study sublinear algorithms for two fundamental graph problems, MAXCUT and correlation clustering. Our focus is on constructing core-sets as well as developing streaming algorithms for these problems. Constant space algorithms are known for dense graphs for these problems, while $\Omega(n)$ lower bounds exist (in the streaming setting) for sparse graphs. Our goal in this paper is to bridge the gap between these extremes. Our first result is to construct core-sets of size $\tilde{O}(n{1-\delta})$ for both the problems, on graphs with average degree $n{\delta}$ (for any $\delta >0$). This turns out to be optimal, under the exponential time hypothesis (ETH). Our core-set analysis is based on studying random-induced sub-problems of optimization problems. To the best of our knowledge, all the known results in our parameter range rely crucially on near-regularity assumptions. We avoid these by using a biased sampling approach, which we analyze using recent results on concentration of quadratic functions. We then show that our construction yields a 2-pass streaming $(1+\epsilon)$-approximation for both problems; the algorithm uses $\tilde{O}(n{1-\delta})$ space, for graphs of average degree $n\delta$.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.