Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Unsupervised Band Selection of Hyperspectral Images via Multi-dictionary Sparse Representation (1802.06983v1)

Published 20 Feb 2018 in cs.CV

Abstract: Hyperspectral images have far more spectral bands than ordinary multispectral images. Rich band information provides more favorable conditions for the tremendous applications. However, significant increase in the dimensionality of spectral bands may lead to the curse of dimensionality, especially for classification applications. Furthermore, there are a large amount of redundant information among the raw image cubes due to water absorptions, sensor noises and other influence factors. Band selection is a direct and effective method to remove redundant information and reduce the spectral dimension for decreasing computational complexity and avoiding the curse of dimensionality. In this paper, we present a novel learning framework for band selection based on the idea of sparse representation. More specifically, first each band is approximately represented by the linear combination of other bands, then the original band image can be represented by a multi-dictionary learning mechanism. As a result, a group of weights can be obtained by sparse optimization for all bands. Finally, the specific bands will be selected, if they get higher weights than other bands in the representation of the original image. Experimental results on three widely used hyperspectral datasets show that our proposed algorithm achieves better performance in hyperspectral image classification, when compared with other state-of-art band selection methods.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube