Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Generalization Error Bounds with Probabilistic Guarantee for SGD in Nonconvex Optimization (1802.06903v3)

Published 19 Feb 2018 in stat.ML, cs.LG, and math.OC

Abstract: The success of deep learning has led to a rising interest in the generalization property of the stochastic gradient descent (SGD) method, and stability is one popular approach to study it. Existing works based on stability have studied nonconvex loss functions, but only considered the generalization error of the SGD in expectation. In this paper, we establish various generalization error bounds with probabilistic guarantee for the SGD. Specifically, for both general nonconvex loss functions and gradient dominant loss functions, we characterize the on-average stability of the iterates generated by SGD in terms of the on-average variance of the stochastic gradients. Such characterization leads to improved bounds for the generalization error for SGD. We then study the regularized risk minimization problem with strongly convex regularizers, and obtain improved generalization error bounds for proximal SGD. With strongly convex regularizers, we further establish the generalization error bounds for nonconvex loss functions under proximal SGD with high-probability guarantee, i.e., exponential concentration in probability.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.