Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Deterministic Protocol for Sequential Asymptotic Learning (1802.06871v1)

Published 9 Jan 2018 in cs.GT and cs.DM

Abstract: In the classic herding model, agents receive private signals about an underlying binary state of nature, and act sequentially to choose one of two possible actions, after observing the actions of their predecessors. We investigate what types of behaviors lead to asymptotic learning, where agents will eventually converge to the right action in probability. It is known that for rational agents and bounded signals, there will not be asymptotic learning. Does it help if the agents can be cooperative rather than act selfishly? This is simple to achieve if the agents are allowed to use randomized protocols. In this paper, we provide the first deterministic protocol under which asymptotic learning occurs. In addition, our protocol has the advantage of being much simpler than previous protocols.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.