Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Joint Task Assignment and Wireless Resource Allocation for Cooperative Mobile-Edge Computing (1802.06862v1)

Published 7 Feb 2018 in eess.SP, cs.IT, and math.IT

Abstract: This paper studies a multi-user cooperative mobile-edge computing (MEC) system, in which a local mobile user can offload intensive computation tasks to multiple nearby edge devices serving as helpers for remote execution. We focus on the scenario where the local user has a number of independent tasks that can be executed in parallel but cannot be further partitioned. We consider a time division multiple access (TDMA) communication protocol, in which the local user can offload computation tasks to the helpers and download results from them over pre-scheduled time slots. Under this setup, we minimize the local user's computation latency by optimizing the task assignment jointly with the time and power allocations, subject to individual energy constraints at the local user and the helpers. However, the joint task assignment and wireless resource allocation problem is a mixed-integer non-linear program (MINLP) that is hard to solve optimally. To tackle this challenge, we first relax it into a convex problem, and then propose an efficient suboptimal solution based on the optimal solution to the relaxed convex problem. Finally, numerical results show that our proposed joint design significantly reduces the local user's computation latency, as compared against other benchmark schemes that design the task assignment separately from the offloading/downloading resource allocations and local execution.

Citations (41)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube