Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Interpreting DNN output layer activations: A strategy to cope with unseen data in speech recognition (1802.06861v1)

Published 16 Feb 2018 in cs.CL, cs.SD, and eess.AS

Abstract: Unseen data can degrade performance of deep neural net acoustic models. To cope with unseen data, adaptation techniques are deployed. For unlabeled unseen data, one must generate some hypothesis given an existing model, which is used as the label for model adaptation. However, assessing the goodness of the hypothesis can be difficult, and an erroneous hypothesis can lead to poorly trained models. In such cases, a strategy to select data having reliable hypothesis can ensure better model adaptation. This work proposes a data-selection strategy for DNN model adaptation, where DNN output layer activations are used to ascertain the goodness of a generated hypothesis. In a DNN acoustic model, the output layer activations are used to generate target class probabilities. Under unseen data conditions, the difference between the most probable target and the next most probable target is decreased compared to the same for seen data, indicating that the model may be uncertain while generating its hypothesis. This work proposes a strategy to assess a model's performance by analyzing the output layer activations by using a distance measure between the most likely target and the next most likely target, which is used for data selection for performing unsupervised adaptation.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube