Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

On Learning the $cμ$ Rule in Single and Parallel Server Networks (1802.06723v2)

Published 2 Feb 2018 in cs.PF and math.OC

Abstract: We consider learning-based variants of the $c \mu$ rule for scheduling in single and parallel server settings of multi-class queueing systems. In the single server setting, the $c \mu$ rule is known to minimize the expected holding-cost (weighted queue-lengths summed over classes and a fixed time horizon). We focus on the problem where the service rates $\mu$ are unknown with the holding-cost regret (regret against the $c \mu$ rule with known $\mu$) as our objective. We show that the greedy algorithm that uses empirically learned service rates results in a constant holding-cost regret (the regret is independent of the time horizon). This free exploration can be explained in the single server setting by the fact that any work-conserving policy obtains the same number of samples in a busy cycle. In the parallel server setting, we show that the $c \mu$ rule may result in unstable queues, even for arrival rates within the capacity region. We then present sufficient conditions for geometric ergodicity under the $c \mu$ rule. Using these results, we propose an almost greedy algorithm that explores only when the number of samples falls below a threshold. We show that this algorithm delivers constant holding-cost regret because a free exploration condition is eventually satisfied.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.