Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

An Adaptive Version of Brandes' Algorithm for Betweenness Centrality (1802.06701v4)

Published 19 Feb 2018 in cs.DS and cs.SI

Abstract: Betweenness centrality---measuring how many shortest paths pass through a vertex---is one of the most important network analysis concepts for assessing the relative importance of a vertex. The well-known algorithm of Brandes [J. Math. Sociol.~'01] computes, on an $n$-vertex and $m$-edge graph, the betweenness centrality of all vertices in $O(nm)$ worst-case time. In later work, significant empirical speedups were achieved by preprocessing degree-one vertices and by graph partitioning based on cut vertices. We contribute an algorithmic treatment of degree-two vertices, which turns out to be much richer in mathematical structure than the case of degree-one vertices. Based on these three algorithmic ingredients, we provide a strengthened worst-case running time analysis for betweenness centrality algorithms. More specifically, we prove an adaptive running time bound $O(kn)$, where $k < m$ is the size of a minimum feedback edge set of the input graph.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.