Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Guaranteed Recovery of One-Hidden-Layer Neural Networks via Cross Entropy (1802.06463v3)

Published 18 Feb 2018 in stat.ML and cs.LG

Abstract: We study model recovery for data classification, where the training labels are generated from a one-hidden-layer neural network with sigmoid activations, also known as a single-layer feedforward network, and the goal is to recover the weights of the neural network. We consider two network models, the fully-connected network (FCN) and the non-overlapping convolutional neural network (CNN). We prove that with Gaussian inputs, the empirical risk based on cross entropy exhibits strong convexity and smoothness {\em uniformly} in a local neighborhood of the ground truth, as soon as the sample complexity is sufficiently large. This implies that if initialized in this neighborhood, gradient descent converges linearly to a critical point that is provably close to the ground truth. Furthermore, we show such an initialization can be obtained via the tensor method. This establishes the global convergence guarantee for empirical risk minimization using cross entropy via gradient descent for learning one-hidden-layer neural networks, at the near-optimal sample and computational complexity with respect to the network input dimension without unrealistic assumptions such as requiring a fresh set of samples at each iteration.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.