Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Heuristic Based Induction of Answer Set Programs: From Default theories to combinatorial problems (1802.06462v1)

Published 18 Feb 2018 in cs.LO

Abstract: Significant research has been conducted in recent years to extend Inductive Logic Programming (ILP) methods to induce Answer Set Programs (ASP). These methods perform an exhaustive search for the correct hypothesis by encoding an ILP problem instance as an ASP program. Exhaustive search, however, results in loss of scalability. In addition, the language bias employed in these methods is overly restrictive too. In this paper we extend our previous work on learning stratified answer set programs that have a single stable model to learning arbitrary (i.e., non-stratified) ones with multiple stable models. Our extended algorithm is a greedy FOIL-like algorithm, capable of inducing non-monotonic logic programs, examples of which includes programs for combinatorial problems such as graph-coloring and N-queens. To the best of our knowledge, this is the first heuristic-based ILP algorithm to induce answer set programs with multiple stable models.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.