Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
9 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep neural decoders for near term fault-tolerant experiments (1802.06441v2)

Published 18 Feb 2018 in quant-ph and stat.ML

Abstract: Finding efficient decoders for quantum error correcting codes adapted to realistic experimental noise in fault-tolerant devices represents a significant challenge. In this paper we introduce several decoding algorithms complemented by deep neural decoders and apply them to analyze several fault-tolerant error correction protocols such as the surface code as well as Steane and Knill error correction. Our methods require no knowledge of the underlying noise model afflicting the quantum device making them appealing for real-world experiments. Our analysis is based on a full circuit-level noise model. It considers both distance-three and five codes, and is performed near the codes pseudo-threshold regime. Training deep neural decoders in low noise rate regimes appears to be a challenging machine learning endeavour. We provide a detailed description of our neural network architectures and training methodology. We then discuss both the advantages and limitations of deep neural decoders. Lastly, we provide a rigorous analysis of the decoding runtime of trained deep neural decoders and compare our methods with anticipated gate times in future quantum devices. Given the broad applications of our decoding schemes, we believe that the methods presented in this paper could have practical applications for near term fault-tolerant experiments.

Citations (76)

Summary

We haven't generated a summary for this paper yet.